TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems
(Preliminary White Paper, November 9, 2015)
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
Google Research∗
Abstract
TensorFlow [1] is an interface for expressing machine learn-
ing algorithms, and an implementation for executing such al-
gorithms. A computation expressed using TensorFlow can be
executed with little or no change on a wide variety of
Martin/berg/jay/TensorFlow/Paul/variety/Talwar/Kunal/Sutskever/Ilya/
Martin/berg/jay/TensorFlow/Paul/variety/Talwar/Kunal/Sutskever/Ilya/
-->