注册
登录
场景模型
thesis-code
返回
项目作者:
tmpethick
项目描述 :
Thesis codebase for running scalable high-dimensional Gaussian Processes on Economic Models
高级语言:
Jupyter Notebook
项目主页:
项目地址:
git://github.com/tmpethick/thesis-code.git
创建时间:
2019-03-12T15:38:52Z
项目社区:
https://github.com/tmpethick/thesis-code
开源协议:
下载
heston_1647166059949.pdf
embedding_1647166060022.pdf
heston_1647166060045.pdf
scalability-varying-M-dataset_1647166060066.pdf
scalability-varying-M-time-vs-M_1647166060109.pdf
scalability-varying-M-time_1647166060140.pdf
scalability-varying-M_1647166060202.pdf
scalability-varying-N-time_1647166060223.pdf
scalability-varying-N_1647166060229.pdf
ipoptr_1647166055432.pdf
sipopt_manual_1647166055498.pdf
documentation_1647166055686.pdf
ampl110_1647166055818.pdf
UserManual_1647166056597.pdf
ipoptr_1647166056708.pdf
sipopt_manual_1647166056717.pdf
documentation_1647166056760.pdf
ampl110_1647166056876.pdf
thesis_1647166057894.pdf
AS-example_1647166057962.pdf
depth_to_error_1647166058029.pdf
A-SG-_1647166058246.pdf
A-SG-failure_1647166058270.pdf
AS-circular5D-feature_1647166058298.pdf
BACKUP-dkl-kink2D-manifold-f_1647166058321.pdf
BACKUP-dkl-kink2D-manifold-features_1647166058364.pdf
activation-1_1647166058384.pdf
activation-rellu-tanh_1647166058438.pdf
activation-relu_1647166058449.pdf
activation-tanh_1647166058473.pdf
dkl-kink2D-f_1647166058487.pdf
dkl-kink2D-features_1647166058529.pdf
dkl-kink2D-manifold-f_1647166058551.pdf
dkl-kink2D-manifold-features_1647166058570.pdf
dkl-lengthscale-f_1647166058576.pdf
dkl-lengthscale-features_1647166058623.pdf
emb1000-ASGP_1647166058636.pdf
emb1000-DKL-err_1647166058669.pdf
emb1000-DNNBLR-err_1647166058695.pdf
emb1000-DNNBLR_1647166058720.pdf
emb1000-dkl_1647166058744.pdf
embedding-AS_1647166058762.pdf
growth-model-mae_1647166058842.pdf
growth-model-max_1647166058953.pdf
kernel-err-vs-m_1647166058980.pdf
kernel-rbf-diff_1647166059069.pdf
kernel-rbf_1647166059093.pdf
kernel-rff-diff_1647166059114.pdf
kernel-rff_1647166059138.pdf
kernel-ski-diff_1647166059184.pdf
kernel-ski_1647166059216.pdf
lml(lengthscale)-a_1647166059238.pdf
lml(lengthscale)-b_1647166059255.pdf
low-noise-a_1647166059272.pdf
low-noise-b_1647166059318.pdf
policy_1647166059343.pdf
kernel-0.1_1647166059382.pdf
kernel-0.5_1647166059519.pdf
kernel-1_1647166059593.pdf
kernel-Linear-posterior_1647166059599.pdf
kernel-Linear_1647166059620.pdf
kernel-Matern32_1647166059632.pdf
kernel-Matern52-posterior_1647166059655.pdf
kernel-Matern52_1647166059677.pdf
kernel-RBF-posterior_1647166059692.pdf
kernel-RBF_1647166059717.pdf
variance-starvation-a_1647166059778.pdf
variance-starvation-b_1647166059803.pdf
variance-starvation-c_1647166059888.pdf
variance-starvation-d_1647166059935.pdf